The Emperor's New Sampling Rate

Apr 1, 2008 12:00 PM, By Paul D. Lehrman



Education Guide

Mix is gearing up to present its longstanding annual Audio Education Guide in its November 2014 issue. Want to have your school listed in the directory, or do you need to update your current directory listing? Add an image, program description, or a logo to your listing! Get your school in the Mix Education Guide 2014.

The arguments about sampling rates and word lengths in digital audio are long over with, aren't they? I mean, no less a personage than James A. “Andy” Moorer — former director of Stanford's CCRMA, co-founder of Sonic Solutions, recipient of a Lifetime Achievement Award from the AES and now senior scientist at Adobe — wrote the following in an unpublished (but oft-quoted) paper a dozen years ago: “Let us start with observations that are largely beyond question. These observations are not a subject of debate, but they beg further discussion: Ninety-six-kHz audio universally sounds better than 48- or 44.1kHz audio” (his emphasis). The great unwashed consumer base hasn't caught on to this because we're still waiting for that new medium to come along that will prove it to them and begin a long overdue renaissance in high-end audio, right?

Well, SACD and DVD-A have been on the scene for some time, but haven't made much of a splash in the consumer market. Direct Stream Digital (DSD) is being used quite a bit as a recording format in high-end classical and jazz circles; Telarc's doing everything in DSD these days. However, the problems of editing, processing and mixing recordings in DSD have never been solved well enough for the format to be adopted by the pop music world. Yet no matter how good they sound at the mastering level, the truth remains: The vast majority of DSD recordings are still delivered to the public on ordinary CDs.

According to a remarkable new study, however, the failure of new audio formats — at least the ones that claim superiority thanks to higher sample rates — to succeed commercially may in reality be meaningless. The study basically says that (with apologies to Firesign Theatre) everything you, I, Moorer and everyone else know about how much better high-sample-rate audio sounds is wrong.

The study was published in this past September's Journal of the Audio Engineering Society under the title “Audibility of a CD-Standard A/D/A Loop Inserted Into High-Resolution Audio Playback.” The study blew me away for a number of reasons. One is that it was almost identical to a study I proposed some years ago at the school where I was teaching, but it never got past the proposal stage. Second, the two authors of the study, David Moran and Brad Meyer, happen to be people whom I've known for several decades (we were all part of the crew covering audio and other technologies at The Boston Phoenix when I was starting out as a writer), but I had little idea what they were up to these days.

The main reason it knocked the wind out of me was its conclusions. It was designed to show whether real people, with good ears, can hear any differences between “high-resolution” audio and the 44.1kHz/16-bit CD standard. And the answer Moran and Meyer came up with, after hundreds of trials with dozens of subjects using four different top-tier systems playing a wide variety of music, is, “No, they can't.”


The experiment was wonderfully simple: The authors set up a double-blind comparison system in which one position played high-end SACDs and DVD-As through state-of-the-art preamps, power amps and speakers. At the other position, the output from the SACD player was first passed through the AD/DA converters of an HHB CD recorder and then through the same signal chain. The levels of the two sides were matched to within 0.1 dB, with the amplifier doing the matching in series with the CD recorder so no one could claim that it degraded the SACD signal. The test subjects used an “A/B/X” comparator to switch the signals, meaning that in some of the tests, when the subjects hit the Change button they didn't know if the signal actually changed.

There were 60 subjects, almost all of whom were people who know how to listen to recorded music: recording professionals, nonprofessional audiophiles and college students in a well-regarded recording program. In all, there were 554 trials during a period of a year. The experiment was done on four different systems, all employing high-end components and all in very quiet rooms designed for listening in both private homes and pro facilities. All subjects were given brief hearing tests to determine their response to signals above 15 kHz. That data, as well as the subject's gender and professional experience, was tabulated with the results.


The number of times out of 554 that the listeners correctly identified which system was which was 276, or 49.82 percent — exactly the same thing that would have happened if they had based their responses on flipping a coin. Audiophiles and working engineers did slightly better, or 52.7-percent correct, while those who could hear above 15 kHz actually did worse, or 45.3 percent. Women, who were involved in less than 10 percent of the trials, did relatively poorly, getting just 37.5-percent right.

So how did the audio community respond to this? Meyer tells me that he got a lot of “thank you” and “it's about time” responses. He also says that the article passed through the Journal's rigorous review process without any argument. But some loud screams were heard from various members in the audio-tweak community, and a number of heated and sometimes nasty flame wars erupted on several audio forums within hours of the article's release — many of them started by people who hadn't bothered to read it first.

Most of the objections were based on the fact that the authors didn't include in their paper the list of equipment and recordings that they used. Meyer explains that part of that reason was to keep the article from getting too long. But anyone familiar with the type of debate that often occurs in tweak circles knows that had the authors been specific about the components, they would have immediately been attacked on the basis that their equipment was, of course, inferior to what they should have used, and so, of course no one would hear any difference.

In fact, Meyer and Moran posted all the information about the signal chains and the source material within a couple of weeks of the article's publication on the Website of the Boston Audio Society, a venerable 37-year-old, independent non-profit organization, in which both authors have long been active. The equipment list included amplifiers from high-end manufacturers like Adcom, Carver, Sim Audio and Stage Accompany, and speakers from Snell and Bag End, as well as the oft-worshipped Quad ESL-989 electrostatics, which are supposed to have usable response up to 23 kHz — which is, of course, above the Nyquist frequency of the HHB recorder's converters. The subjects listened to discs that covered a wide range of material and included classical instrumental, choral, jazz, rock and pop, from audiophile labels like Mobile Fidelity, Telarc and Chesky.

So the objectors really didn't have much to object to. But if you think about it, the exact equipment list is largely irrelevant. If you assume the equipment, the listening environment and the listeners' critical faculties are all at least good, then what's most amazing about their findings is that the results were always the same, no matter what equipment they used or who was listening to it or what they were listening to. Not one listener, under any circumstances, could consistently distinguish between high-resolution audio that was passed through the 44.1kHz/16-bit CD “bottleneck” and audio that wasn't.

Does this mean that someone else couldn't do a similar experiment and end up with different results? Not at all — and Meyer and Moran are urging others to do just that. After all, this is what the scientific method is all about: If your experiment comes up with a certain result, then by publishing it you are inviting the rest of the world to copy (or expand on) what you've done and to see if their results agree or disagree with yours. I would love to see this experiment duplicated often, and I would be delighted to see someone come up with different results.

Acceptable Use Policy
blog comments powered by Disqus

Mix Books

Modern Recording and Mixing

This 2-DVD set will show you how the best in the music industry set up a studio to make world-class records. Regardless of what gear you are using, the information you'll find here will allow you to take advantage of decades of expert knowledge. Order now $39.95

Mastering Cubase 4

Electronic Musician magazine and Thomson Course Technology PTR have joined forces again to create the second volume in their Personal Studio Series, Mastering Steinberg's Cubase(tm). Edited and produced by the staff of Electronic Musician, this special issue is not only a must-read for users of Cubase(tm) software, but it also delivers essential information for anyone recording/producing music in a personal-studio. Order now $12.95



Delivered straight to your inbox every other week, MixLine takes you straight into the studio, with new product announcements, industry news, upcoming events, recent recording/post projects and much more. Click here to read the latest edition; sign up here.

MixLine Live

Delivered straight to your inbox every other week, MixLine Live takes you on the road with today's hottest tours, new sound reinforcement professional products, recent installs, industry news and much more. Click here to read the latest edition; sign up here.

[an error occurred while processing this directive]

The Wire, a virtual press conference offering postings of the latest gear and music news, direct from the source. Visit the The Wire for the latest press postings.